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Recent years have seen a trend towards unmanned multi-sensor

surveillance networks with large numbers of cheap and limited-

performance sensors. While these networks hold significant poten-

tial for surveillance, it is of interest to address fundamental limi-

tations in large-scale implementations. We first introduce a simple

analytical tracker performance model. Analysis of this model sug-

gests that scan-based tracking performance improves with increas-

ing numbers of sensors, but only to a certain point beyond which

degradation is observed. Correspondingly, we address model-based

optimization of the local sensor detection threshold and the number

of sensors. Next, we propose a two-stage tracking approach (fuse-

before-track) as a possible approach to overcoming the difficulties in

large-sensor surveillance, and we illustrate promising performance

results with simulated surveillance data.
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1. INTRODUCTION

While multi-sensor systems hold great potential for
surveillance performance, the technical challenges are
significant, and include the need for effective calibra-
tion as well as a statistically-valid characterization of
environmental uncertainties and contact measurement
errors. Additionally, automatic tracking and fusion pro-
cessing with active sensors must contend with high false
contact rates and target fading effects. Issues in multi-
sensor surveillance and numerous design approaches are
discussed in [4, 9, 24].
In [12—13], we present model-based, simulation-

based, and sea-trial tracking performance results with a
track-oriented, modular multi-hypothesis tracking
scheme. Of particular interest is the tradeoff between
centralized and multi-stage processing: we have found
that, when faced with significant target fading effects
and for modest false contact rates, distributed process-
ing can outperform centralized processing. This some-
what surprising result is based on the fundamental sub-
optimality of all tracking algorithms that must contend
with measurement origin uncertainty. This explains the
seeming contradiction with results in the nonlinear fil-
tering and distributed detection literature, in particu-
lar the well-known optimality of centralized processing
schemes [9, 25].
Ultimately, for sufficiently low-SNR target scenar-

ios, effective real-time automatic tracking is extremely
challenging regardless of the choice of data processing
architecture. One approach is to relax the real-time re-
quirement, and to leverage powerful batch processing
techniques [3]. However, such schemes are not easily
amenable to real-time surveillance requirements, and
generally assume non-maneuvering targets. An alterna-
tive approach in challenging scenarios is to consider
enlarging the surveillance network, possibly through
bootstrapping approaches that include sub-band pro-
cessing techniques [19], whereby a sensor is effec-
tively “replaced” with a number of slightly-degraded
sensors.
The latter approach (enlarging the surveillance net-

work) implicitly assumes that an increased number of
like-performing, calibrated, and registered sensors are
always to be preferred, i.e., more sensors are always
better than fewer. Is this true in general or are there
performance limits as the number of sensors becomes
large? This is the issue that we address in this paper.
We start by introducing in Section 2 a simple ana-

lytical model for tracker performance. We study tracker
performance as a function of local detection thresh-
old, number of sensors, and track management criteria.
The model supports the conclusion that there are per-
formance bounds on achievable performance in large
sensor networks.
Can we do better if we consider a more complex,

multi-stage processing architecture? In Section 3, we
describe the fuse-before-track (FbT) architecture and
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provide motivation for its use in large sensor networks.
The key insight that motivates the FbT architecture is
that it couples the advantages of batch processing in the
fusion step, followed by the advantages of scan-based
processing (real-time processing with a maneuvering
target model) in the tracking step.
It is important to note that we do not argue that

FbT will outperform a sufficiently complex centralized
processing scheme. Rather, our claim is that multi-
stage processing with a relatively simple tracking mod-
ule can achieve good performance results. Further, as
we will see in the Monte Carlo study, this perfor-
mance is achieved with a significantly lower computa-
tional effort than in centralized (single-stage) process-
ing.
The first stage in the FbT architecture is a static

fusion (or contact fusion) stage [4, 9]. In Section 4, we
study perhaps the simplest approach to contact fusion
that was suggested in [19] and is known as contact
sifting. We analytically characterize the performance of
this stage of processing, and experimentally validate
the performance model. We also briefly discuss an
alternative approach to contact fusion.
Section 5 presents a Monte Carlo study of multi-

sensor tracking performance for a representative multi-
target surveillance scenario. The results suggest that the
FbT architecture has merit and deserves further attention
by the target tracking community. Section 6 provides
conclusions and directions for future work. This paper
is an extended and improved version of [14—16].

2. TRACKER PERFORMANCE MODELING

Tracker performance modelling is addressed at
length in [4, 8]. Extensions that address target fading
effects and distributed tracking architectures are given
in [10, 12—13]. For our purposes here, we introduce a
simple tracker performance model that identifies a com-
pact relationship between scan rate and performance.
Scan rate is directly proportional to the number of sen-
sors and, thus, the model will support the subsequent
analysis on performance as a function of the number of
sensors.

2.1. Tracker Model

Modeling parameters:

² Target: kinematic “nearly constant position” motion
model in two dimensions with maneuvering index
q m2s¡1; fixed target SNR d;

² Sensor: each with scan every¢t sec; positional mea-
surements with covariance R; surveillance region of
size A m2, detection cells of size C m2, detection
threshold D;

² Tracker: declare track on N consecutive associated
detections, terminate track on K consecutive coasts
(missed updates), association probability gate PG and

gating parameter ° (with two-dimensional measure-
ments, ° = 9:2 corresponds to PG = 0:99; see details
in [8]).

The following derived quantities are of interest.

² Detection probability PD, where we assume Rayleigh-
distributed amplitude statistics [9]:

PD = exp
�
¡ D

1+ d

¶
: (1)

² False alarm density per square meter, where we again
assume Rayleigh-distributed amplitude statistics:

¸=
exp(¡D)

C
: (2)

² False alarm rate per hour:

¸FAR =
3600 ¢¸A
¢t

: (3)

² Probability of correct association: we assume that
the statistical nearest neighbor is used for track up-
date, that the target-originated contact is one standard
deviation in each dimension from the true target lo-
cation, and that the track has steady-state filter co-
variance based on consecutive detection events. Thus,
letting S be the innovation covariance [4, p. 49] and
letting V be the validation region volume [4, p. 96],
we have:

PCA = exp(¡¸V) (4)

V = ¼jSj1=2 (5)

S = P(¡) +R (6)

P(¡) = P(+)+Q (7)

P(+) = P(¡)¡P(¡)(P(¡) +R)¡1P(¡) (8)

Q =
·
q¢t 0

0 q¢t

¸
: (9)

Note that P(¡) denotes the filter prediction covari-
ance, while P(+) denotes the filter update covariance.
Further, note that P(¡) is the solution to the (steady-
state) algebraic Riccati equation (ARE) [17].

² Probability of track update and miss (i.e., track coast),
where a track update requires that the current scan
include target detection, successful gating to the target
track, and correct association:

PU = PDPGPCA (10)

PM = 1¡PU: (11)

² Average track confirmation time (note that the ex-
pected value of the geometric distribution with pa-
rameter p is given by 1=p), where track confirmation
requires N consecutive, associated target detections:

¿C =
1

PN¡1U

�
N ¡ 1+ 1

PD

¶
¢t: (12)
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² Average track hold time, where track termination is
achieved after K consecutive scans without an asso-
ciated target detection:

¿H =
1

PK¡1M

�
K ¡1+ 1

PM

¶
¢t: (13)

Note that equations (12—13) both rely on nested ge-
ometric probability distributions–that is to say, the
sojourn time prior to tentative track initiation has a ge-
ometric distribution, as does the total track initiation
time. It is easy to show (by linearity of the expectation
operator) that equations (12—13) hold.

² Track detection probability, given by the fraction of
time during which a target has a corresponding con-
firmed track:

PTD =
¿H

¿C + ¿H
: (14)

² Probability of false update, given by one minus the
probability that no false contacts exist in the associ-
ation gate and again assuming steady-state filter co-
variance:

PFU = 1¡ exp(¡¸V°) (15)

V° = °¼jSj1=2: (16)

² Probability of false track, given by the probability that
a false contact leads to a sequence of associated false
contacts:

PFT = P
N¡1
FU : (17)

² False track rate per hour:

¸FTR =
3600 ¢PFT¸A

¢t
: (18)

For simplicity and to minimize the number of mod-
eling parameters, we have assumed track confirmation
on N consecutive detections rather than a more general
M-of-N track initiation criterion. The equations above
generalize easily to the M-of-N criterion, using the bi-
nomial distribution with parameters N ¡1 and PU for in
the target-present case, and parameters N ¡ 1 and PFU
in the target-absent case.
We have invoked several modeling simplifications,

including the impact of false updates on the true track
formation and maintenance. This effect is estimated
empirically in [8, pp. 207—208], as the impact is difficult
to capture analytically. Here, we assume for simplicity
that the impact of a false update in terms of track
degradation is comparable to that of a track miss.
An illustration of the Markov chain model that cor-

responds to the modeling above is given in Fig. 1.
The tracker performance model introduced here

shares some commonalities with the system operating
characteristics (SOC) curve introduced in [5]. One of
the differences is that the metrics of interest differ. In
[5], a single, fixed time window in considered, and track
detection and false track probabilities are computed.
Rather, here the track detection probability is a measure

Fig. 1. Markov chain model for tracker logical state, in the
target-present case. (A similar Markov chain applies to the

target-absent case.)

TABLE I
Model Simulation Parameters

Parameter Setting

Maneuverability index q 100 m2s¡1

Target SNR d 10 dB
Scan interval ¢t0 60 sec

Measurement covariance matrix R
·
100 0

0 100

¸
m2

Surveillance region A 108 m2

Detection cell C 100 m2

Detection threshold D 5.0—9.0 dB
Track initiation N 3
Track termination K 3
Association gate ° 9.2
Gate probability PG 0.99

of track hold, which answers the following question:
“For a given target, what is the probability that there is a
corresponding track at any given time?” The false track
rate identifies the number of false objects generated by
the tracker per unit time.

2.2. Tracker Performance Analysis

We are interested to examine input and output per-
formance curves (¸FAR vs. PD, and ¸FTR vs. P

T
D , respec-

tively) as a function of the detection threshold D, and as
a function of the number of sensors. The latter can be
addressed by setting the scan rate to ¢t=¢t0=Z, where
Z is the number of equally-performing sensors and ¢t0

is the single-sensor rate. Parameters are set as indicated
in Table I, and performance curves are in Fig. 2. (Note
that by object we mean either contact or track.)
Key conclusions are as follows:

² Tracking provides a roughly two-order-of-magnitude
reduction in false objects, with comparable object
detection performance.

² With a low constraint on false object rate, it is best to
use few sensors.
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Fig. 2. Performance curves for several network-size assumptions.
Solid lines characterize sensor performance, while dotted lines

characterize tracker performance as characterized by the analytical
model in Section 2.1.

² With a larger constraint on false object rate, it is best
to use more sensors.

² For any given number of sensors, unlike the behavior
of the (monotonic) input ROC curve, a maximum in
track-level detection is achieved for a non-zero SNR
detection threshold.

2.3. Optimal Detection Threshold and Number of
Sensors

An approach to improve centralized tracking perfor-
mance is to optimize the local sensor detection threshold
(D) as well as the number of sensors to be processed
(Z), as a function of a constraint on the false track rate.
We anticipate that this will lead to a performance curve
that is the envelope of the family of curves shown in
Fig. 2.
For a given ¸FTR, we wish to optimize the local

sensor detection threshold (D) as well as the sensor
scan rate ¢t (from which we infer the number of
sensors). This optimization problem can be recast as
the following constrained maximization problem:

max
¢t,DT

PTD (¢t,D)

s.t ¸FTR(¢t,D) = ®:
(19)

Note that the dependence of PTD on ¢t is complex,
since PU and PM both depend on ¢t. This optimization
problem does not lend itself to an analytical solution.
Using the same parameter settings as in Table I, the
solution to equation (19) leads to the envelope of the
family of curves in Fig. 2, as illustrated in Fig. 3.
(Optimization is performed using the function fmincon
in MATLAB.)
It is instructive to examine the optimal scan interval

¢topt and the optimal detection threshold Dopt as a

Fig. 3. Performance curve obtained solving the optimization
problem (22).

Fig. 4. Optimal scan interval (inversely proportional to number of
sensors) as a function of ¸FTR.

Fig. 5. Optimal detection threshold as a function of ¸FTR.

function of ¸FTR; these are illustrated in Figs. 4—5. It
is interesting to note that, with increasing ¸FTR, the
optimal PTD is achieved with a reduction in both ¢t and
D: we both increase the number of sensors and lower
the detection threshold.
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Fig. 6. Performance curves for several network size assumptions
with adaptive track-management parameters. Solid lines characterize

sensor performance, while dotted lines characterize tracker
performance as characterized by the analytical model in Section 2.1.

Note that our analysis has been limited to the as-
sumptions of equally-performing sensors with identical
detection thresholds. Relaxing either of these assump-
tions introduces the need for a more complex tracker
performance model.

2.4. Tuning the Track Management Parameters

A possible objection to the results in Sections 2.2—
2.3 is that we use the same track initiation and termina-
tion criteria throughout. More generally, one might wish
to adapt the parameters N and K to the data rate and to
the detection threshold. A fully adaptive selection of
these parameters is quite complex. We may, however,
seek to vary N and K as a function of the data rate
only. In particular, neglecting the dependence of PFU on
the data rate, we can achieve a comparable false track
rate by setting N(Z) in the case of Z > 1 sensors as
follows, where N(1) =N0. We set the false track rate to
be independent of the number of sensors:

¸FTR =
3600 ¢PN(Z)¡1FU ¸A

¢t=Z
=
3600 ¢PN0¡1FU ¸A

¢t
:

Neglecting the dependence of PFU on the scan rate leads
to the following simple relationship between the track
confirmation window length and the number of sensors:

N(Z) =N0 +
logZ

log(1=PFU)
: (20)

We scale the parameter K in a comparable manner.
As a result of adaptively-selected track-management
parameters, the curves in Fig. 2 are modified to those
shown in Fig. 6. The corresponding values of N (and
K) are given in Table II.

Fig. 7. Candidate fusion and tracking architectures.

TABLE II
Adaptive Track Management for the Results in Fig. 2

Number of Sensors (Z) Track Initiation (N)

1 3
10 4
100 5
1,000 5
10,000 6

We find that adaptive track management does have
an impact on centralized tracking performance. In par-
ticular, note that the 100-sensor performance curve is
better than the 10-sensor curve, which in turn out-
performs the one-sensor curve. Nonetheless, the qual-
itative findings noted above still hold: significant re-
duction in false objects with automatic tracking, non-
monotonicity in tracker performance curves, and satu-
ration in performance benefits for a large-enough num-
ber of sensors. Correspondingly, the optimal choice for
the number of sensors still depends on the false track
requirement.

3. THE FUSE-BEFORE-TRACK ARCHITECTURE

Is it possible to exceed centralized tracking perfor-
mance? At a conceptual level, the answer would seem
to be no: every algorithmic step that is possible in multi-
stage or distributed processing can be achieved in a cen-
tralized processing configuration.
A practical question of interest is whether a particu-

lar (sub-optimal) tracking module is better employed in
a single-stage processing architecture or in a two-stage
architecture. For the latter approach, we are interested
to explore a fuse-before-track (FbT) processing scheme,
whereby contact fusion across sensors precedes tracking
over time. The two approaches are illustrated in Fig. 7.
It is important to note that the FbT architecture

supports real-time processing just as the centralized
architecture does: as fused contacts are produced,
they provide input to the second-stage scan-based
tracker.
For the purposes of this discussion, the particular

choice of tracking module (here, a track-oriented multi-
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hypothesis tracker [12—13]) is not critical; however,
what is critical is that our tracker is representative
of a real-time, scan-based algorithm that necessarily
discards data-association hypotheses (in the case of non-
Bayesian tracking) or that combines hypotheses (in the
case of Bayesian tracking). Indeed, while amenable to
real-time surveillance requirements, scan-based tracking
approaches lack the performance potential of batch
processing schemes such as [3].
For simplicity, we assume that the (active) sensors

are (nearly) synchronized; that is, we assume that the
scans of contact-level data are acquired for the same
sequence of times, for all sensors. An alternative time-
series representation of the two architectures in Fig. 7
is illustrated in Fig. 8.
The motivation for investigating the FbT architec-

ture is as follows. The static fusion stage is not hindered
by the requirement for scan-based processing, since all
the sensors scan the surveillance region simultaneously.
Thus, for large sensor networks, the two-stage architec-
ture leverages the strength of batch processing in the fu-
sion stage, while maintaining the real-time surveillance
requirement with scan-based tracking.
Let us return for a moment to the argument that the

same processing results obtained with FbT are in prin-
ciple achievable with single-stage or centralized pro-
cessing. After all, as we saw in the model-based re-
sults documented in Section 2, there is an advantage
to appropriately scaling the track-management param-
eters with the sensor data rate. However, key data as-
sociation parameters do not scale well with increasing
data rate. For instance, for computational reasons, the n-
scan track hypothesis depth parameter that is common
in multi-hypothesis tracking (MHT) approaches cannot
be scaled with the data rate. A similar consideration
holds for multiple-model filters. Thus, as we will see in
Section 5, an adjustment to track-management param-
eters for centralized processing is insufficient to match
the promising performance results exhibited by the FbT
architecture.

4. STATIC FUSION AND THE CONTACT SIFTING
APPROACH

We focus now on the static fusion problem, which
represents the first stage in the fuse-before-track (FbT)
architecture. We will introduce the concept of probabil-
ity of localization and use this concept in studying the
(simple) contact sifting approach and its performance
characteristics; subsequently, we will briefly discuss an
alternative approach to static fusion.

4.1. Probability of Localization

Assume we have a surveillance region A composed
of Ncell detection cells of equal size. Assume further
that detection statistics in both the target-present and

Fig. 8. FbT includes static fusion and scan-based tracking.

target-absent cases follow Rayleigh statistics, and that
the expected target SNRs are given by d. Given a
detection threshold D, it can be shown that targets have
the following detection probability (same as equation
(1)):

PD = exp
�
¡ D

1+ d

¶
: (21)

Further, the probability of false contact in any cell
is given by:

PFA = exp(¡D): (22)

Accordingly, the number of false contacts is Poisson
with parameter ¸A = PFANcell. Further, the false contacts
are uniformly distributed in the surveillance region.
The well-known classical ROC curve in this case is

given by varying D over a range of values, with the
following relationship between PD and PFA:

PD = (PFA)
1=(1+d): (23)

A slightly modified ROC curve provides PD as a
function of the expected number of false contacts (same
as ¸A):

NFA = PFANcell: (24)

From an operational perspective, we are interested
in detecting and localizing targets: target detections that
are distant from the true target location are indistin-
guishable from false contacts; similarly, false contacts
that fortuitously are close to the true target location are
indistinguishable from target detections. Thus, we intro-
duce the notion of probability of localization: the prob-
ability that a contact exists close enough to the target.
This notion couples detection and localization metrics
into a single quantity of interest; related work on the
coupling between detection and localization objectives
is found in [21].
Assume that our sensor provides two-dimensional

Cartesian positional measurements of target location,
with uncorrelated and identically distributed Gaussian
errors in x and y, and variance ¾2x . Let " be the maximum
distance for acceptable target localization. This defines
a circular validation region around the target of area
B = ¼"2. False contacts are uniformly distributed in this
region with parameter ¸B = ¸AB=A. Define » = "=¾x.
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The probability of localization PL is the following:

PL = PD

�
1¡ exp

�
¡»

2

2

¶¶
+(1¡ exp(¡¸B))

¡PD
�
1¡ exp

�
¡»

2

2

¶¶
(1¡ exp(¡¸B)):

(25)

The first term is the probability that a target is detected,
with the detection lying in the validation region. The
second term is the probability that at least one false
contact is in the validation region; it can be derived by
denoting C = (1¡B=A) and observing that the proba-
bility that no false contact is in the validation region is
given by:

1X
k=0

¸kA
k!
exp(¡¸A)Ck = exp(¡¸A(1¡C))

£
1X
k=0

(¸AC)
k

k!
exp(¡¸AC)

= exp(¡¸AB=A) = exp(¡¸B):
The third term in equation (25) is the probability

that both target and non-target contacts are present in
the validation region.
Contact sifting performance is defined analytically

through equations (21—25). Note that these equations
are based on some simplifying assumptions:

² Targets are not closely spaced: the model does not
account for the presence of contacts from one target
in the validation region of another.

² Targets are not near the edge of the surveillance
region: we consistently use B as the size of the
validation region.

² The impact of imperfect sensor resolution (grid cell
size) is neglected: false contacts are assumed to be
uniformly distributed in the surveillance area, and tar-
get detections are Gaussian distributed and centered
on true target location.

² False contact statistics are based on the contact-absent
case. That is, we do not include target contacts outside
the validation region in the model for the number of
false contact: the impact is minimal for non-trivial
false contact rates.

Note that in the limit "! 0 and »! 0 (i.e., ¾x! 0
faster than "! 0), we see from equation (25) that
PL! PD. (One can think of PL as a generalization of
PD in the presence of localization error.)
It is important to use the probability of localization

as defined here (i.e., detection and localization) as a
performance measure, rather than simply the probability
of detection. Indeed, we are interested in comparing
the performance at the input and output of the static

fusion process. Accordingly, it is important to measure
performance consistently: at the output of static fusion
processing, we define target-induced and false contacts
based on a localization threshold.

4.2. Contact Sifting Performance

Assume we have N independent identical sensors
with performance as described in the previous section.
Note that N in this section should not be confused with
the track-initiation window size in Section 2: the two
may be different in general.
Indeed, note that in Section 2 we reasoned over

both Z sensors and the temporal window of N scans
for track initiation. Here, we study the static fusion
problem, where we can alternatively think of having a
set of synchronous sensors, or a set of scans from the
same sensor. That is, we only have Z or N to consider.
We have chosen to denote this buffer size by N, as
this buffer size relates directly to the previous track-
initiation discussion.
Surveillance performance will depend critically on

the specific fusion algorithm that we employ to combine
N sets of contacts into a single set. In this section, we
consider the simple batch-processing approach.
Even with the assumption of like-performing sen-

sors, one might ask whether optimal multi-sensor per-
formance will be achieved by requiring that all sensors
use the same detection threshold D. It is known from
the distributed detection literature that the assumption of
equal local thresholds may lead to sub-optimal perfor-
mance; nonetheless, in certain cases optimality is indeed
achieved with identical local thresholds [25]. Further,
under this assumption the form of the optimal fusion
rule is known to be of the form K-of-N, though the
optimal choice of K will depend on the local threshold,
i.e., a fixed K-of-N fusion rule is not optimal in gen-
eral. ROC performance of the K-of-N fusion rule is the
following [22]:

PD(K,N) =
NX
j=K

�
N

j

¶
PjD(1¡PD)N¡j (26)

PFA(K,N) =
NX
j=K

�
N

j

¶
PjFA(1¡PFA)N¡j : (27)

Note that K in this section should not be confused
with the track-termination threshold defined in Sec-
tion 2.
As in the single-sensor case, we are interested in a

slightly modified definition of the classical ROC curve,
where we replace PFA(K,N) with NFA(K,N); these are
related as follows:

NFA(K,N) = PFA(K,N)Ncell: (28)
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For simplicity, we proceed with an assumption of
equal local sensor statistics and local detection thresh-
olds. The contact sifting approach relies on a sifting grid
in measurement space. In each sifting cell, we sum the
number of contacts over all N sensors. Sifting cells in
which the number of contacts exceeds K lead to a fused
contact, with localization based on appropriate averag-
ing over the location of the single-sensor contacts (ac-
counting for contact uncertainties).
In order to develop a simple model for contact sift-

ing performance, we introduce a number of simplifying
approximations, in addition to those previously intro-
duced. The impact of these simplifying approximations
will be evaluated experimentally.

² Assume targets are located at the center of sifting
cells.

² Assume sifting cell size and shape is same as the
validation region B introduced previously.

² Neglect overlaps among circular grid cells, and as-
sume the cells fully cover the surveillance region.
This simplifies the computation of false contact statis-
tics, and ensures that successful localization corre-
sponds precisely to fused contacts in target-present
cells.

Let the random variables NcellT and NcellFA denote the
number of target and non-target contacts in a partic-
ular sifting cell, respectively. Then, the probability of
localization PL(K,N) can be expressed by leveraging the
following decomposition:

PL(K,N) = P(N
cell
T +Ncell

FA ¸ K)

= P(Ncell
T ¸K) +

K¡1X
j=0

P(Ncell
T = j)P(Ncell

FA ¸ K ¡ j):

Accordingly, letting P̃D = PD(1¡ exp(¡»2=2)), we
have

PL(K,N) =
NX
j=K

�
N

j

¶
P̃jD(1¡ P̃D)N¡j

+
K¡1X
j=0

"�
N

j

¶
P̃jD(1¡ P̃D)N¡j

1X
i=K¡j

¸iB
i!
exp(¡¸B)

#
:

(29)

The expected number of false contacts ÑFA(K,N) is
given by the following, where Nsiftcell is the number of
sifting cells that is not to be confused with the number
of sensor grid cells Ncell:

ÑFA(K,N) =N
sift
cell

1X
j=K

(N¸B)
j

j!
exp(¡N¸B): (30)

More compact analytical expressions for (29—30)
based on the incomplete gamma function [1] are given

as follows:

PL(K,N) =
NX
j=K

�
N

j

¶
P̃jD(1¡ P̃D)N¡j

+
K¡1X
j=0

·�
N

j

¶
P̃jD(1¡ P̃D)N¡j¡ (K ¡ j,¸B)

¸

(31)

ÑFA(K,N) =N
sift
cell¡ (K,N¸B): (32)

Further, when N is large enough and ¸B small,
PL(K,N) given by equation (29) can be calculated by
using the Laplace-De Moivre approximation [20]:

PL(K,N) =Q

0
@ K ¡NP̃Dq

NP̃D(1¡ P̃D)

1
A : (33)

Q(¢) is the complementary distribution function of
the standard normal random variable:

Q(x) =
Z 1

x

1p
2¼
e¡t

2=2dt: (34)

It is of interest to compare ROC curves based on
equations (28—30) with performance curves based on
equations (31—32). Letting Nsiftcell =Ncell, we have PFA =
¸B . For large N, we have exact equivalence of equations
(28) and (30); we have reasonable agreement for modest
values of N. Next, we examine the limit "! 0 and »! 0
(i.e., ¾x! 0 faster than "! 0) in equation (29). Note
that this limit impacts both the validation region and
the sifting cell size, as we have fixed these to be the
same. We have both P̃D! PD and ¸B ! 0. It follows
immediately that PL(K,N)! PD(K,N).
Thus, contact sifting with Nsiftcell =Ncell, extremely

small localization errors (¾x! 0), and extremely large
number of sensors (N!1) corresponds precisely to
the distributed-detection problem characterized by equa-
tions (26—28). Even for finite N, there is close agree-
ment with the analytical performance curve given by
equations (29—30).
The choice of contact sifting cell size has inherent

tradeoffs. Large cells will reduce the contrast between
target-absent and target-present statistics. Likewise, a
small cell containing a target is less likely to contain
those target-originated contacts that incur significant lo-
calization errors. In addition to cell size, the choice of
threshold parameter includes non-trivial tradeoffs. As
in distributed detection theory (and as noted earlier), in
general the optimal contact-sifting fusion rule will de-
pendent on the single-sensor (local) detection threshold.
Experimental validation of contact sifting perfor-

mance (equations 29—30) is documented in [14].

4.3. Other Approaches to Contact Fusion

The contact sifting algorithm is not effective in close-
target scenarios. Another approach to the problem is
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to consider a multi-sensor probabilistic data association
algorithm. Further details of this approach may be found
in [16].
Under this approach, we take a generalized likelihood

ratio test (GLRT) approach for both the detection and
estimation problems. For each hypothesized target, we
find its location estimate that maximizes the likelihood
function, and choose the hypothesis that has the largest
likelihood. This results in a procedure that maximizes
the likelihood function with respect to the number of
targets and their respective locations.
A constraint is imposed on the maximum allowable

number of targets present in the surveillance region. A
sequential search over the number of targets is used for
a computationally feasible solution. The technique pro-
vides location estimates as part of the detection process.
The location estimates can always be further refined by
an estimation process. This approach in a different con-
text is developed in [6—7]. In [7], comparisons are made
between the proposed method and the unstructured and
structured techniques based on Akaike information the-
oretic criteria (AIC) [2], minimum description length
(MDL) [23], and Bayesian predictive density [11].
A known limitation of the GLRT approach is the

runaway degree-of-freedom phenomenon. In [16], by
not considering a penalty factor as prescribed by the AIC
or Bayesian Information Criterion (BIC) approaches, we
did face the problem of overestimating the number of
targets.
Compared to the more complex approaches to con-

tact fusion, the contact-sifting algorithm is simple and
handles situations where we have large number of tar-
gets, albeit not closely spaced.

5. FUSE-BEFORE-TRACK PERFORMANCE STUDY

We have argued in Section 3 that the fuse-before-
track architecture holds potential for target tracking
in large sensor networks. Here, we provide results of
Monte Carlo experimental validation. For both the cen-
tralized and FbT architectures, we use a track-oriented
multi-hypothesis tracker [12—13]. Simulation and algo-
rithmic parameters are in Table III.
We have stochastically-generated target ground truth

based on a nearly constant velocity motion model, for
which positional measurements are obtained from a
number of like-performing sensors that are synchro-
nized in time and with a fixed sensor revisit time. All
target trajectories are initiated at scenario initiation and
target death results if a target exits the scenario area. Ini-
tial target location is uniformly distributed in the surveil-
lance region. The tracker is assumed to have knowledge
of target motion and sensor parameters; by this we mean
that the statistical characteristics of target motion and of
the sensor measurement error are known.
Performance evaluation relies on track classification,

whereby those tracks with sufficiently large average lo-
calization error from all target trajectories are classified

TABLE III
Parameters for Single-Sensor Tracking, Multi-Sensor Tracking, and

FbT Simulation-Based Performance Evaluation

Parameter Setting

Monte Carlo realizations 500
Number of targets 10
Target SNR 13 dB

Target maneuverability index 0:01 m2s¡3

Initial velocity std. dev. 1 ms¡1

Sensor threshold 10.5 dB
Contact measurement error std. dev.

(in both x and y dimensions)
10 m

Number of sensors 10
Sensor revisit time 10 sec
Scenario duration 3 min
Surveillance region (1:5 km)2

Detection cell size (1 m)2

Sifting cell size (30 m)2

Sifting threshold (number of contacts) 3
Track initiation (FbT) 4-of-4

Track initiation (centralized) 12-of-40
FbT track termination (allowed misses) 3

Centralized track termination (allowed misses) 20
Hypothesis tree depth (n-scan) 2

Track classification distance threshold 14.14 m

as false. Otherwise, the closest trajectory is identified.
For tracks that extend in time beyond a given target
death, the last target location is used for positional com-
parison.
Note that the track-initiation setting for the multi-

sensor (centralized) configuration is different than in
FbT, so as to have a comparable track rate at the
processing output. Indeed, a concatenation of M-of-N
track initiation criteria is roughly comparable to a rule
where the Ms are multiplied together, and likewise for
the Ns. Similarly, it can be verified that a track that is
kept alive with a concatenation of M-of-N rules (with
M = 1 in the second stage) has maintenance statistics
comparable to a single (centralized) 1-of-N with an
appropriate choice of N (in our case, 20 allowed missed
detections).
Similarly, track termination is based on the maxi-

mum time since the last track update, rather than on the
number of missed updates.
The sensor threshold and target SNR settings above

lead to a target probability of detection (PD) of 0.62. The
sensor threshold, detection cell size, and surveillance
region sizes lead to a contact false alarm rate (¸FAR)
of 30 contacts per scan. Given the scenario revisit time
and scenario duration, for each Monte Carlo realization
there are 18 contact files for each sensor, and 180 in
total, leading to 18 fused-contact files.
Given the sifting cell size and sifting thresholds

above, the first stage of FbT processing generally leads
to approximately 20 fused contacts per scan. The fused-
contact location is given by the mean of the contacts in
the sifting cell and, correspondingly, the fused-contact
measurement covariance is smaller than that of single-
sensor contacts. These statistics follow directly from
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Fig. 9. One realization in the simulation-based analysis of centralized and fuse-before-track processing. False contacts are black dots,
target-originated contacts are magenta dots, target trajectories are magenta, fused contacts in FbT processing are blue dots, FbT tracks are

blue, and centralized tracks are red.

TABLE IV
Tracker Performance Results

Metric Centralized FbT

PT 0.90 0.60
¸FTR 186 28

Execution time ratio 0.78 0.013

least-squares estimation, and may alternatively be in-
terpreted as the result of Kalman filtering of a sequence
of contacts at the same measurement time.
Performance results are given in Table IV. Note

first that the overall input false contact rate is roughly
108,000 contacts per hour. Thus, in both centralized and
FbT configurations, target tracking provides a signifi-
cant data reduction.
The key track detection statistics are track hold (PT),

the average fraction of time during which an active
track exists on a target, and the false track rate (¸FTR),
the number of false tracks produced per unit time. The
centralized tracking and FbT results are comparable: the
former has better track hold, while the latter has a lower
false track rate. Both achieve a dramatic reduction in
false objects, for a track hold that is comparable or better
than the target probability of detection.
The results documented here are encouraging, since

the first stage of FbT processing (static fusion) could
be improved further, as discussed in Section 4.3. Thus,
the FbT architecture is promising and deserves further
investigation.
Perhaps a more compelling motivation for the FbT

architectures is the dramatic improvement in processing
time. Indeed, contact sifting provides a dramatic reduc-

tion in the contact data rate: fused contact files include
approximately 20 contacts. This, combined with the ten-
fold reduction in the number of contact files, leads to
considerable computational savings in MHT processing.
The savings in execution time are a combination of re-
duced computational load as well as saving in reading
and writing a much small number of input and output
files, respectively.
The execution time ratio in Table IV is the ratio of av-

erage tracker processing time and scenario duration. We
see that centralized tracking achieves slightly faster than
real-time processing, while FbT requires only a small
fraction of the processing time. (Results are generated
on a DELL OPTIPLEX GX620 with Intel Pentium D
processor.)
Fig. 9 provides an illustration of a realization of

contact-level and track-level data, while Figs. 10—12 il-
lustrate some examples in detail. As indicated in Ta-
ble III, generally we find that the FbT approach ex-
hibits good track stability, at the cost of a longer track
initiation time that in turn induces a lower track hold
than in centralized tracking. Centralized tracking ex-
hibits poorer tracking stability and, correspondingly, a
higher false track rate.
The example in Fig. 12 shows two target trajectories

that start in close proximity. While it takes longer to
initiate tracks with the FbT approach, this is achieved
without false track formation.
It should be noted that this study has been limited

to random target tracks in a fairly wide surveillance re-
gion, which rarely leads to dense multi-target instan-
tiations. These would challenge the FbT architecture
as implemented here, as the first-stage contact-sifting
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Fig. 10. An instance of comparable performance of centralized (red) and FbT (blue) tracks.

Fig. 11. An illustration of lower track hold but with more stable tracks in the FbT (blue) approach.

algorithm is known to be inappropriate for close-target
cases. Likewise, in a computational sense, dense-target
scenarios would challenge the centralized tracker more
severely than it would in the FbT approach.

6. CONCLUSIONS

While large sensor networks hold great potential
for surveillance performance, current scan-based target
tracking technology by itself may not offer the best pro-
cessing paradigm. Conversely, existing batch process-
ing approaches do not provide real-time surveillance

outputs. Thus, we believe a two-stage architecture that
leverages the strengths of both batch and scan-based
processing holds great potential for effective surveil-
lance performance. In particular, contact fusion for a
large number of nearly simultaneous sensor scans may
be followed quite effectively by scan-based tracking.
This paper has addressed these contributions. First,

in Section 2 we introduced an analytical performance
model for scan-based tracking, and studied the perfor-
mance limitations that the model suggests for increasing
date rates (or number of sensors). Next, in Section 3
we introduced the fuse-before-track (FbT) architecture
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Fig. 12. Another illustration of reduced FbT (blue) track hold, but without false track confirmation as observed in the centralized case (red).

for automatic tracking in large sensor networks, which
includes contact fusing followed by scan-based track-
ing; the specific FbT instantiation that we have imple-
mented utilizes the contact sifting algorithm followed
by an MHT tracker. After validating an analytical per-
formance model for contact sifting and briefly describ-
ing another approach to contact fusion in Section 4,
in Section 5 we describe simulation results that com-
pare centralized and FbT processing results. We found
that both approaches hold some merit and indeed both
provide a dramatic reduction in false object rates. The
FbB provides considerable computational savings, good
track stability, and a lower false track rate, at the cost
of reduced track hold.
A number of directions for future work exist. Prin-

cipally, and in addition to a more effective first stage
in the FbT architecture to handle closely-spaced target
scenarios, the future direction includes an analysis of the
impact of synchronized vs. staggered sensor sampling
times [18, 26], for which analysis in the large-sensor
case is lacking.
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